第171章 笔试结束(3 / 5)

问、第10问,就分别占据了三项。

包括后来米国克雷数学研究所所提出的七大千禧难题,也是呼应了1900年希尔伯特提出的这23问。

其影响力,由此可见一斑。

陈舟看着查找到的资料。

虽然过去了一个多世纪,数学这门学科也得到了长足的发展。

但在这23问中,一共得到承认,并全部解决的有17个。

还剩下足足6个问题,并未得到完整的解决。

由此可见,时间并不是解决问题的充分条件,它只是必要因素罢了。

就像费马大定理,可是历经了300多年的沉淀,最终在1995年,才由怀尔斯解决。

陈舟微微有些感慨的看着这些问题后面的论述。

这些问题的存在,其实早已超越了问题本身的意义。

在这些问题的研究过程中,所诞生的新的数学工具,研究方法,甚至比某些问题还要重要。

像“某些数的超越性的证明”这一问题。

早在1929年和1935年就分别被几位数学家独立证明了其正确性。

但是关于超越数理论的研究,却远远未完成。

这一问题的研究,也成为了超越数理论的一部分。

还有“素数分别”的问题。

黎曼猜想、哥德巴赫猜想以及孪生素数问题。

都是尚未解决的问题。

但在解决这些猜想的过程中,无论是得到的三素数定理,还是对筛法的重要改进,都是对极其重要且难得的成果。

握住鼠标,滑动滚轮,陈舟把这23问中尚未解决的6个难题,再次梳理了一遍。

倒不是他打算从这6个问题中,就挑一个作为课题研究了。

而是,他希望从中获得一些方向。

然后,再向这些真正的难题靠近。

而且,系统任务每次都是只指引一个方向,所有的东西都得靠陈舟自己来。

所以,陈舟就打算确立一个系统的课题研究思路。

从课题的选题开始,到之后的每一步。

他打算逐渐养成,或者说形成自己的研究风格。

这也是陈舟经过深思熟虑之后的决定。

毕竟,从上次的任务来看,系统所奖励的经验,最终还是看的课题价值。

那当然要一步步深入咯。

陈舟做完笔记,便又搜索了一些相关文献和类似的内容。

把这些全部做完,陈舟伸了个懒腰。

瞥了眼时间,已经10点多了。

刚奇怪,怎么杨依依没有来催觉消息。

就听到手机震动了一下。

陈舟拿起看了一眼,杨依依发过来的。

开心,该睡觉咯,要乖哦,嘻嘻。

看着消息,陈舟微微一笑,手指快速点击,回了一条。

嗯,那开心的依依,我们睡觉吧……

刚发过去,杨依依就回了过来。

嗯嗯,晚安。

陈舟:晚安。

第二天,3月22日,周日。

上午9点进场,9点半考试。

个人赛第三个科目是几何与拓扑。

杨依依考完这个科目,她整个笔试阶段,便结束了。

下午的最后两个科目,她是都没有报的。

对于几何与拓扑的试卷,陈舟倒是眼前一亮。

这试卷出卷人不错,卷面整洁,题目很短。

看着就很舒心嘛……

第一题是关于球面的积的问题。

陈舟抬笔计算,思路清晰,计算严谨。