第一一四章 自动(1 / 2)

永不下车 阳电 1144 字 3个月前

截至目前,人类能制造的ai,仍然局限于定义上的“弱人工智能”,无法完全取代人的作用。

但所有这些认识,在方然看来,皆有其片面性。

譬如软件工程领域,一般认为,人的作用在软件开流程中必不可少软件的需求分析,架构设计,模块编写,集成测试,乃至验收交付,维护升级,都是难以规格化、标准化的千差万别,这一情形并未被142o年代衍生出的“软件工程”概念所终止。

时至今日,计算机越来越先进,it领域的架构师、程序员和运维人员仍有增无减,就是证据。

但,就在这无数人的智慧之上,随着计算机网络、软件系统的愈加庞大、复杂,在直接与用户打交道的前端应用之外,为终端、节点及应用程序底层支持的系统和软件,规模也越来越大,这些软件的设计,无须过多考虑人的因素。

自身是软件,外联的则是其他软件,变革,正端于这些静默运行于后台的系统。

每天的日常,是根据文档完成系统模块、或者设计算法,方然只是“国际商用机器”公司的普通员工,凭借蛛丝马迹和缜密思考,他才在几个月后现,自己参与完成的软件,似乎就与aiasg有关。

作为“国际商用机器”的战略项目,aiasg并不像其他的项目规划那样,在网络上有大量的新闻报道,这更让方然好奇。

凭借黑客手段,他6续拿到了一些内部材料,阅读后,就基本验证了自己的猜测

n,顾名思义,的确是一种能独立开软件的存在。

脱离了开者的智慧,ai,本质上只是软件和运行软件的硬件,这样的东西,如今已能完成从即时翻译到自动驾驶的很多事,但要“编程”,就有些不可思议。

“国际商用机器”公司必定很早就规划了这方面的工作,不仅在ai算法上有了重大进展,想必,还构建了庞大的软件工程通用库。

通过自身参与的边缘性工作,窥探aiasg的原理,并不太难。

在软件工程中,人的智慧,究竟怎样挥独特的作用呢,一方面是分析需求,提出要解决的问题,另一方面则是对给定的问题,给出解决的方案。

与普通人的认识相反,提出问题,往往比解决问题更困难。

“认识,分析与改造客观世界”,人的一切活动,显然也包括需要用计算机来进行的活动,总可以归结于此,对特定的问题,无数前人的智慧已经找到了解法,那么这些解法,稍加变换,应用到类似问题的解决上,这种事就并非不能用ai来完成。

与此相比,从前述的“认识,分析与改造”过程中,提炼出新的问题,并独创性的给出解决方案,才更加困难。

人工智能的前沿动向,坦率的讲,方然并不甚了了,但是他也知道,目前的研究热点集中在所谓“仿生”,从“人工神经网络”到“学习体系”的诸多分支,都试图模仿人脑的学习和演化过程,也就是用庞大而复杂的电路,通过自组织、混沌演化的方式,模仿人的智力获取与提升过程。

n,原则上,并不需要这些高深的架构才能实现。

计算机网络中的软件,浩如烟海,真正归纳起来的种类却并不多,绝大多数软件要应付的问题,性质都彼此雷同,尤其在核心网与服务器上运行的后端程序,对接的都是其他计算机,几乎没有人的因素。

这样的软件,一言蔽之,面对的问题、和解决的算法,都具有高度的规律性。

n系统,具备极高的复杂度,依托于巨型计算机的1oof1os级(每秒一万亿亿次)算力,对给定的系统要求,可以自动生成、部署与维护特定的软件系统。

这且不算,按方然查到的资料,这aiasg分明已演化到了2o版本,在生成软件的过程中,几乎完