第七八七章 甲子(2 / 2)

永不下车 阳电 1127 字 3个月前

万亿瓦的光束,则会在路径上产生比较严重的加热效应,继而产生光路扭曲。

在短距离传输时,勉强可以忽略这一效应,但是对三十八万公里的传输长度,

就绝对无法漠视其存在。

事实上,以盖亚净土当前的技术水平,不要将上亿瓦的激光,准确照在月球表面的某一区域,就是将一束功率极低的测距激光,准确照射到月面,

也不是很简单的事。

对此,研究者们的对策,林林总总不一而足,从“近地轨道换能站”的中继照射方案,到“分布式投射体系”的分散配置方案,得益于当下充裕的科研预算,其中若干种方案都进入了实验验证阶段。

不过,时间进入1519年,开始进入实质性部署的系统,

却和上述方案都不一样。

月球的能源问题,本质上,是在一个表面无大气层无其他能源的体,设法获取能量,人类在盖亚表面的工程思路,并不见得适用。

1519年春夏之交,陆续进行的几次大规模航发射活动,消耗掉上百枚n5火箭,gc着手在距离月球两万多公里的绕月轨道上,建设一座径向尺寸超过一千米设计指标百万千瓦的阳光反射空间站。

与此同时,在月球表面的适当地点,若干座阳光接受站的建设也陆续展开。

利用太阳辐射,为体表面能量,这样一种看起来十分自然而然的设想,也就是在月球的客观条件下才能实现。

具体的配置,早年间,研发机构里进行过多次讨论。

第一种方案,是在月球表面大规模部署光伏系统,直接获得太阳能;

由于月球没有大气层也没有其他卫星保护(这是很显然的,月球体量太),光伏系统的维护压力太大,产能也不一定能稳定,所以被否决。

第二种方案,是在月球表面大规模部署反射板,在近月轨道部署换能器,然后再将能量用光辐射的形式馈送到月面;

相比脆弱的光伏系统,反射板的抗损性能更好一些,维护工作量也,但却平添近月轨道换能器——月面的传输系统,在成本和稳定性上仍不理想。

nc批准的工程计划,在近月轨道上部署超大型反射面,

将阳光反射到月面的一系列换能站。