学中的能级研究得出这个公司,而休·蒙哥马利则是研究对关联函数的素数画像…… 当然这并不能说明什么,最多只能说明一些规律的确具备普适性,并延伸出了相关的猜想——高斯酉集合猜想: 黎曼ζ函数的非平凡零点分布与随机矩阵理论中高斯酉矩阵的特征值分布具有相同的统计性质。 乔喻则是通过两个结构相似的公式入手,逐步验证模态点的分布与黎曼ζ函数零点分布的某种同构性。 这种构造性的几何化方法,与蒙哥马利和戴森的统计规律研究虽然不同,但在本质上都揭示了某种普适规律。 不得不说,这是真很有意思!